SMART RESOURCE USAGE PREDICTION USING CLOUD COMPUTING FOR MASSIVE DATA PROCESSING SYSTEMS

Author:

Chandy Abraham

Abstract

Resource management plays the vital role in the cloud computing as the requirement for the massive data processing system such as heath sectors, business solutions and the internet of things keeps on increasing in at an exponential range. Allocation of proper and perfect resources remains as the mains reasons for the successful computation of the applications. However the conventional resources management methodologies, that totally depends on the simple heuristic based methods fails to accomplish a performance that is predictable. The appropriate resource allocation is directly related to the workload demand prediction as the would help to bring down the cost, time and power and the memory usage. The proposed method in the paper leverages the machine learning approaches to manage the resource allocation in the cloud computing for the massive data processing system, the simulation of the proposed model using the network simulator -2 enables to achieve a better performance and resources utilization at a decreased cost, time, power and memory usage.

Publisher

Inventive Research Organization

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An effective deep learning architecture leveraging BIRCH clustering for resource usage prediction of heterogeneous machines in cloud data center;Cluster Computing;2024-02-06

2. Allocation of Resources in the Cloud Conducted Efficiently Through the Use of Machine Learning;2023 International Conference on Emerging Research in Computational Science (ICERCS);2023-12-07

3. A Meta Heuristics SMO-SA Hybrid Approach for Resource Provisioning in Cloud Computing Framework;Intelligent Cyber Physical Systems and Internet of Things;2023

4. Analysis of Machine Learning Algorithm to Predict Symptoms of Diabetes—A Review;Inventive Computation and Information Technologies;2023

5. Cloud Gaming Performance on Client Devices Using the GameQoo Platform;2022 IEEE 7th International Conference on Information Technology and Digital Applications (ICITDA);2022-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3