Empirical Analysis for Classification of Fake News through Text Representation

Author:

Krishnamurthi Ilango,V Santhi,N H Madhumitha

Abstract

Fake news refers to inaccurate or deceptive information that is portrayed as legitimate news. It is intentionally generated and disseminated to mislead the public. Fake news takes on multiple forms, including altered visuals, invented narratives, and misrepresented accounts of actual occurrences, although this work focuses solely on textual content. Initially, the focus of this work is to evaluate various pre-processing techniques involved in fake news detection, such as TF-IDF, GloVe, and Integer Encoding. Each of these techniques has its own way of converting text to numerical format. Despite numerous studies in this field, there is still a research gap regarding the comparative analysis of TF_IDF (Term Frequency Inverse Document Frequency), Integer Encoding, and GloVe (Global Vector for Word Representation) specifically for fake news tasks. This study aims to bridge this gap by evaluating and comparing the performance of these three popular preprocessing techniques. Next, three RNN variants are used in this experiment for the classification task. They are SimpleRNN (Simple Recurrent Neural Network), LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit). The reason behind choosing RNN variants is RNN is capable of capturing long term dependencies. It is proven to be effective in handling sequential data. It consists of memory that stores the previous important content. GloVe showed high accuracy in GRU model, and it also used only less computational resources, but LSTM took more time and required more computational resources. The results produced by GRU and LSTM for GloVe were better than the rest of the combinations. Integer Encoding also produced good results. But TF-IDF gives poor results when fed to Deep Learning models like RNN, LSTM, and GRU, but when it is fed to Machine Learning Model it gives good accuracy. This is due to sparse matrix generation based on the importance of term frequency. The findings highlight the advantages and limitations of each algorithm, providing valuable guidance for researchers and practitioners in choosing the suitable method for their specific needs. The experimental finding of this work is that GloVe with GRU produces the highest accuracy of 92.15%

Publisher

Inventive Research Organization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3