Optimal Compression of Remote Sensing Images Using Deep Learning during Transmission of Data

Author:

Wang Haoxiang

Abstract

Industrial internet of things has grown quite popular in recent years and involves a large number of intelligent devices linked together to build a system that can investigate, communicate, gather and observe information. Due to this requirement, there is more demand for compression techniques which compresses data, leading to less usage of resources and low complexity. This is where Convolutional Neural Networks (CNN) play a large role in the field of computer vision, especially in places where high applications such as interpretation coupled with detection is required. Similarly, low-level applications such as image compression cannot be resolved using this methodology. In this paper, a compression technique for remote sensing images using CNN is proposed. This methodology incorporates CNN in a compact learning environment wherein the actual image that consists of structural data is coded using Lempel Ziv Markov chain algorithm. This process is followed by image reconstruction in order to obtain the actual image in high quality. Other methodologies such as optimized trunctiona, JPEG2000, JPEC and binary tree were compared using a large number of experiments in terms of space saving, reconstructed image quality and efficiency. The output obtained indicates that the proposed methodology shows effective improvement, attaining a 50 dB signal to noise ratio and space saving of 90%.

Publisher

Inventive Research Organization

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of Effectiveness of Deep Learning on OFDM and NOMA Systems;Lecture Notes in Electrical Engineering;2023

2. Image Error Concealment Method by Hiding a Copy of the Same Image in it in Spatial and Wavelet Domain before Transmission;2022 International Conference on Automation, Computing and Renewable Systems (ICACRS);2022-12-13

3. Deep Learning based Cooperative Spectrum Sensing with Crowd Sensors using Data Cleansing Algorithm;2022 International Conference on Edge Computing and Applications (ICECAA);2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3