A survey on Deep Learning Based Eye Gaze Estimation Methods

Author:

Sangeetha S. K. B.

Abstract

In recent years, deep-learning systems have made great progress, particularly in the disciplines of computer vision and pattern recognition. Deep-learning technology can be used to enable inference models to do real-time object detection and recognition. Using deep-learning-based designs, eye tracking systems could determine the position of eyes or pupils, regardless of whether visible-light or near-infrared image sensors were utilized. For growing electronic vehicle systems, such as driver monitoring systems and new touch screens, accurate and successful eye gaze estimates are critical. In demanding, unregulated, low-power situations, such systems must operate efficiently and at a reasonable cost. A thorough examination of the different deep learning approaches is required to take into consideration all of the limitations and opportunities of eye gaze tracking. The goal of this research is to learn more about the history of eye gaze tracking, as well as how deep learning contributed to computer vision-based tracking. Finally, this research presents a generalized system model for deep learning-driven eye gaze direction diagnostics, as well as a comparison of several approaches.

Publisher

Inventive Research Organization

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised Transfer Learning Approach With Adaptive Reweighting and Resampling Strategy for Inter-Subject EOG-Based Gaze Angle Estimation;IEEE Journal of Biomedical and Health Informatics;2024-01

2. A Robust Gaze Estimation Approach via Exploring Relevant Electrooculogram Features and Optimal Electrodes Placements;IEEE Journal of Translational Engineering in Health and Medicine;2024

3. A Generic Algorithm for Controlling an Eyeball-based Cursor System;2022 International Conference on Automation, Computing and Renewable Systems (ICACRS);2022-12-13

4. Eye-Move: An Eye Gaze Typing Application with OpenCV and Dlib Library;2022 International Conference on Automation, Computing and Renewable Systems (ICACRS);2022-12-13

5. Survey on Effective Deep Learning-based Automated Epileptic Seizure Detection;2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2022-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3