Harmonizing Fine-tuned Llama 2 for Content Generation with Stable Diffusion for Image Synthesis in Article Creation

Author:

P. Shenbagam,K S. Thrisha Vaishnavi,S. Hariprakassh,K. Abhirami,B. Abiram,K S. Rakesh Nandhaa

Abstract

The research explores the integration of generative AI in multimedia content production using a fine-tuned Llama 2 model for text generation and the Stable Diffusion algorithm for image synthesis. The research analyses the fine-tuned Llama 2-7b-chat model's adaptability to specific content generation contexts, enhanced by a unique dataset and QLoRa, a Quantized Low-Rank Adaptation for parameter-efficient fine-tuning, achieving significant reductions in training loss and nuanced quality in the generated content. Notably, the model's evaluation yielded an impressive perplexity score of 1.49, indicating advanced predictive performance. Additionally, stable diffusion's ability to transform textual descriptions into intricate images, highlighting its potential in AI-mediated content creation is demonstrated. The experiments and qualitative analyses reveal improvements in efficiency and creativity, emphasizing the collaborative potential of these models to revolutionize multidisciplinary content generation. The research underscores the transformative impact of fine-tuned generative models on content creation and offers insights into the broader implications for future AI research, while acknowledging the critical need for ethical considerations in the deployment of such technologies.

Publisher

Inventive Research Organization

Reference22 articles.

1. [1] Ashish Vaswani, Noam Shazeer, Niki Parmar,et al.”Attention Is All You Need”. 31st International Conference on Neural Information Processing Systems(NeurIPS), no. 07 (2023): 6000–6010.

2. [2] Touvron, Hugo, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov et al. "Llama 2: Open foundation and fine-tuned chat models." arXiv preprint arXiv:2307.09288 (2023).

3. [3] Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, et al.” Parameter-Efficient Fine-Tuning Methods for Pretrained Language Models: A Critical Review and Assessment”. Nature Machine Intelligence, no. 05 (2023): 220-235.

4. [4] Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

5. [5] Dettmers, Tim, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. "Qlora: Efficient finetuning of quantized llms." Advances in Neural Information Processing Systems 36 (2024).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3