Performance Analysis of Various Scheduling Algorithms using CloudSim

Author:

Chapagai Pratima,Shakya Subarna

Abstract

Cloud computing technologies have quickly changed how companies and organizations manage their IT resources. The core of this transformation has evolved as cloud datacenters, which offer scalable and affordable options for hosting and administering a variety of applications and services. One information technology typology that has been widely employed to deliver a range of services via the Internet is cloud computing. It guarantees simpler access to premium services and resources. Cloud systems' operation needs to be planned in order to effectively deliver services to individuals. Task scheduling seeks to maximize system throughput and distribute diverse computational resources to software programs. The unpredictability of the scenario grows as the task and has a strong potential for successful resolution. The study begins with an experimental setup to analyse the various performance metrics of task scheduling algorithms. Every experiment has several important stages. To replicate scenarios found in the real world where jobs are divided across many computing resources, the tasks are assigned to available data centers. A number of experiments were carried out to analyse the performance of First Come First Service (FCFS), Shortest Job First (SJF), Round Robin (RR) and Particle Swarm Optimization (PSO) scheduling algorithms using the parameters: makespan, average completion time, average waiting time, and average cost consumption. Thus, this study provides a description of task scheduling and the performance analysis of algorithms to task scheduling that is employed in cloud computing environments.

Publisher

Inventive Research Organization

Subject

General Arts and Humanities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3