Comparative Analysis an Early Fault Diagnosis Approaches in Rotating Machinery by Convolution Neural Network

Author:

P. Karuppusamy

Abstract

In several industrial applications, rotating machinery is widely utilized in various forms. A growing amount of study, in the academic and industrial fields, as a potential sector for the confidentiality of modern industrial labor systems, has been drawing early fault diagnosis (EFD) techniques. However, EFD plays an essential role in providing sufficient information for performing maintenance activities, preventing and reducing financial loss and disastrous defaults. Many of the existing techniques for identifying rotations were ineffective. For the identification of spinning machine faults, many in-depth learning methods have recently been developed. This research report has included and analysed a number of research publications that have higher precision than standard algorithms for detecting early failures in rotating machinery. In addition to the artificial intelligence monitoring (AIM) model, detecting the defects in rotating machine was also realized through the simulation output. AIM framework model is also testing the rotating machinery in three different stages, which is based on the vibration signal obtained from the bearing system and further it has been trained with the neural network preceding. Compared to other traditional algorithms, the AIM model has achieved greater precision and also the other performance measures are tabulated in the result and discussion section.

Publisher

Inventive Research Organization

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3