Wireless Rechargeable Sensor Network Fault Modeling and Stability Analysis

Author:

S. R. Mugunthan

Abstract

Wide attention has been acquired by the field of wireless rechargeable sensor networks (WRSNs ) across the globe due to its rapid developments. Addressing the security issues in the WRSNs is a crucial task. The process of reinfection, charging and removal in WRSN is performed with a low-energy infected susceptible epidemic model presented in this paper. A basic reproductive value is attained after which the epidemic equilibrium and disease-free points of global and local stabilities are simulated and analyzed. Relationship between the reproductive value and rate of charging as well as the stability is a unique characteristic exhibited by the proposed model observed from the simulations. The WRSN and malware are built with ideal attack-defense strategies. When the reproductive value is not equal to one, the accumulated cost and non-optimal control group are compared in the sensor node evolution and the optimal strategies are validated and verified.

Publisher

Inventive Research Organization

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision based Cassava Plant Leaf Disease Classification using Machine Learning Techniques;2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS);2023-12-11

2. Vision Based Plant Leaf Disease Detection and Recognition Model Using Machine Learning Techniques;2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2023-11-22

3. Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing;IEEE Internet of Things Journal;2023

4. Hybrid Precoding Schemes for mmWave Massive MIMO Systems—A Comprehensive Survey;Proceedings of Third International Conference on Sustainable Expert Systems;2023

5. An Efficient Approach for Wireless Rechargeable Sensor Networks for Vehicle Charging;2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2022-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3