Author:
Thirani Ekta,Jain Jayshree,Narawade Vaibhav
Abstract
The detection of video piracy has improved and emerged as a popular issue in the field of digital video copyright protection because a sequence of videos often comprises a huge amount of data. The major difficulty in achieving efficient and simple video copy detection is to identify compressed and exclusionary video characteristics. To do this, we describe a video copy detection strategy that created the properties for a spatial-temporal domain. The first step is to separate each video sequence into the individual video frame, and then extract the boundaries of each video frame by using PCA SIFT and Hessian- Laplace. Next, for each video frame, we have to implement SVM and KNN features in the spatial and temporal domains to measure their performance matrices in the feature extraction. Finally, the global features found in the Video copy detection are accomplished uniquely and efficiently. Experiments arranged a commonly used VCDB 2014 video dataset, showing that result. The proposed approach is based on various copy detection algorithms and shows various features in terms of both accuracy and efficiency.
Publisher
Inventive Research Organization
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献