Multilayer Perceptron Integrated Fuzzy Nearest Neighbor to Improve the Proficiency of CBR-Retrieval

Author:

V. Dr. Suma

Abstract

The CBR (case based reasoning) is a problem solving technique following different strategy compared to the major approaches of the artificial intelligence. It develops remedies to certain problem based on the pre-existing solutions of similar nature. So the problem using the CBR is handled by retrieving and reusing the similar previously solved problems and available solutions respectively. This makes the process functioning alike based on the human activities is instinctively attractive and more beneficial compared to the Conventional_AI as begins to reason out the possible solutions form the shallow base. The CBR due to the exceeding performance are popular among a wide range of applications such as the weather fore casting, medical and engineering diagnosis, aerospace etc. Identification or sorting out or classification take a significant role in cases that is the training examples retrieval as the perfect identification results in perfect case retrieval, this further enables the case based reasoning to arrive to at a perfect remedy for the problem. The retrieval of cases are mostly based on the similarity and utilizes the KNN (K-Nearest Neighbor). The proposed method in the paper integrates the multilayer perceptron with the fuzzy nearest neighbor (MLP-NFF) system with the help of WEKA to deliver a perfect classification to make the CBR-retrieval efficient. The evaluation of the proposed method and its comparison with the KNN is done using the standard data set obtained from the medical field.

Publisher

Inventive Research Organization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3