Comparative Analysis of an Efficient Image Denoising Method for Wireless Multimedia Sensor Network Images in Transform Domain

Author:

Dhaya R.

Abstract

In recent years, there has been an increasing research interest in image de-noising due to an emphasis on sparse representation. When sparse representation theory is compared to transform domain-based image de-noising, the former indicates that the images have more information. It contains structural characteristics that are quite similar to the structure of dictionary-based atoms. This structure and the dictionary-based method is highly unsuccessful. However, image representation assumes that the noise lack such a feature. The dual-tree complex wavelet transform incorporates an increase in transform data density to reduce the effects of sparse data. This technique has been developed to decrease the image noise by selecting the best-predicted threshold value derived from wavelet coefficients. For our experiment, Discrete Cosine Transform (DCT) and Complex Wavelet Transform (CWT) are used to examine how the suggested technique compares the conventional DCT and CWT on sets of realistic images. As for image quality measures, DT-CWT has leveraged superior results. In terms of processing time, DT-CWT gave better results with a wider PSNR range. Further, the proposed model is tested with a standard digital image named Lena and multimedia sensor images for the denoising algorithm. The suggested denoising technique has delivered minimal effect on the MSE value.

Publisher

Inventive Research Organization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3