Face Recognition Attendance Management System using LBPH and Haar Cascade

Author:

Beri Nuety,Srivastava Vishal,Malik Nikita

Abstract

This research presents the implementation and design of a facial recognition attendance management system by using Local Binary Pattern Histogram (LBPH) and Haar Cascade machine learning algorithms. This system aims to automate the attendance process, providing an efficient and accurate alternative to traditional methods. The Haar Cascade algorithm is employed for face detection due to its rapid processing and high detection rate, while the LBPH algorithm is utilized for face recognition because it is simple and effective in handling changes in facial expressions, lighting, occlusions, distance from the camera, and camera resolution. The integration of these algorithms results in a robust system capable of real-time attendance tracking. Experimental results demonstrate the system's high accuracy and reliability in face detection and recognition under different conditions of lighting, distance from the camera, face expressions, occlusions, and camera resolution, making it suitable for deployment in educational institutions and corporate environments.

Publisher

Inventive Research Organization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3