Real-Time Vehicle Identification for Improving the Traffic Management system-A Review

Author:

Sanjay S Tippannavar ,Yashwanth S D

Abstract

Due to the increasing number of cars on the road and the exponential growth of traffic throughout the globe, regulating traffic has become crucial in the most industrialized countries. The development of technology has led to the current state of traffic management systems that comes with the ability to count, monitor, and predict the speed of vehicles in order to improve the transportation planning. This has also reduced the number of accidents that occur due to worsen traffic conditions. Road traffic surveys have been carried out manually for a long time since automated measures were not often employed due to the difficulty of installation. Machine learning in image processing is widely recognized as a significant approach for real-world applications such as traffic monitoring. The primary benefit of automated vehicle counting is that it allows for the management and evaluation of traffic in the urban transportation system. There are many methods employing distributed acoustic systems on intelligent transportation systems, including YOLO v4 and the Normalized Cross-correlation algorithm, which uses ultrasonic sensors and the algorithms ALPR, YOLO, GDPR, and CNN. The simplest method for identifying a vehicle is to gather information from sensors such as cameras, vibration detectors, ultrasound detectors, or acoustic detectors. These sensors are combined with the proper microcontrollers to determine the amount of traffic using the most recent data and theory. This review article is a quick reference for researchers working on safety-related traffic management systems.

Publisher

Inventive Research Organization

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3