BERT for Twitter Sentiment Analysis: Achieving High Accuracy and Balanced Performance

Author:

Renuka Oladri,Radhakrishnan Niranchana

Abstract

The Bidirectional Encoder Representations from Transformers (BERT) model is used in this work to analyse sentiment on Twitter data. A Kaggle dataset of manually annotated and anonymized COVID-19-related tweets was used to refine the model. Location, tweet date, original tweet content, and sentiment labels are all included in the dataset. When compared to the Multinomial Naive Bayes (MNB) baseline, BERT's performance was assessed, and it achieved an overall accuracy of 87% on the test set. The results indicated that for negative feelings, the accuracy was 0.93, the recall was 0.84, and the F1-score was 0.88; for neutral sentiments, the precision was 0.86, the recall was 0.78, and the F1-score was 0.82; and for positive sentiments, the precision was 0.82, the recall was 0.94, and the F1-score was 0.88. The model's proficiency with the linguistic nuances of Twitter, including slang and sarcasm, was demonstrated. This study also identifies the flaws of BERT and makes recommendations for future research paths, such as the integration of external knowledge and alternative designs.

Publisher

Inventive Research Organization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3