A HYBRID MPPT ALGORITHM FOR SOLAR PV WITH BATTERY CONNECTED SYSTEM

Author:

R Harrini,V. Gopalakrishnan

Abstract

Electricity generation using renewable energy resources rather than fossil fuels reduces gobar gas emissions from the power sector and prevents pollution. The best alternative to conventional energy sources is solar photovoltaic (PV) generation; however, it has some significant disadvantages, including high initial costs, poor photoconversion efficiency, and climatic dependencies. In order to overcome this, PPT techniques are used. The projected work provides a solar power system which tracks the maximum power point using Artificial Neural Network and Perturb and Observe algorithm. Additionally, it adds a new setup for the system that links the photovoltaic array as well as the battery to the system inverter’s DC-link through a single DC-DC converter that can act as both charge controller and Maximum Power Point Tracking (MPPT) device at the same time. When solar energy production exceeds demand, the excess energy is stored in batteries and provided during periods of very low irradiance. The DC voltage is converted into AC voltage using an inverter. The benefit of this technique is that it has greater tracking accuracy. For validation, the proposed model has been analyzed by using MATLAB/Simulink.

Publisher

Inventive Research Organization

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3