Learned Image Compression with Discretized Gaussian Mixture Likelihoods and Attention Modules

Author:

G Ranganathan,V Bindhu

Abstract

There have been many compression standards developed during the past few decades and technological advances has resulted in introducing many methodologies with promising results. As far as PSNR metric is concerned, there is a performance gap between reigning compression standards and learned compression algorithms. Based on research, we experimented using an accurate entropy model on the learned compression algorithms to determine the rate-distortion performance. In this paper, discretized Gaussian Mixture likelihood is proposed to determine the latent code parameters in order to attain a more flexible and accurate model of entropy. Moreover, we have also enhanced the performance of the work by introducing recent attention modules in the network architecture. Simulation results indicate that when compared with the previously existing techniques using high-resolution and Kodak datasets, the proposed work achieves a higher rate of performance. When MS-SSIM is used for optimization, our work generates a more visually pleasant image.

Publisher

Inventive Research Organization

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Object Identification from Dark/Blurred Image using WBWM and Gaussian Pyramid Techniques;2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2022-11-24

2. IoT Group Key Management using Incremental Gaussian Mixture Model;2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC);2022-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3