Hybrid Cascaded Inverter-Based Integrated Hybrid Power Supply Using Nonconventional Energy Sources

Author:

Kayalvizhi S.,Senthil Kumar K.,Sindu M.,Muminthaj S.

Abstract

In this research, a hybrid integrated topology that would work very well for applications involving distribution generation has been suggested. The Photovoltaic and Fuel Cell source are used to power the hybrid integrated topology's power supply. Photovoltaic source is utilized as the main power and runs very near to its Maximum Power Point, while the fuel cell section serves merely as a DC supply and feeds just the power that is needed to make up the difference. The integrated approach improves the overall power level that is supplied because of the presence of the fuel cell in parallel with the photovoltaic source. This may be achieved by smoothing out the voltage stress that are brought by the photovoltaic system's output. Another important characteristic is that the load may be fuelled by photovoltaic energy in any quantity, even if that quantity is relatively low. This is a feasible regardless of the size of the photovoltaic system. In addition, excess power may be sent to the electrolysis load, which results in the source of energy being used in the most effective manner possible. When converting voltages, a Hybrid Cascaded Multilevel Inverter (HCMI) topology is preferred over a conventional three phase inverter because it has the advantages of a gradual decrease in switching losses, a low total harmonic distortion, and a minimum power loss. This in comparison to the conventional three phase inverter, has none of these advantages. In addition to that, the voltages might be converted in a more effective way using this design. The suggested system has a number of desirable qualities, and the most notable are its low operational costs, its user-friendly layout, and its high level of durability.

Publisher

Inventive Research Organization

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fuzzy Time Series Forecasting Model for Urban Mid- and Long-term Electricity Load Forecasting;2023 IEEE International Conference on Networking, Sensing and Control (ICNSC);2023-10-25

2. Recent Advancement and Comparative Turnouts of 1Ø Grid Tied Non-Isolated Inverters Topologies;2022 International Conference on Automation, Computing and Renewable Systems (ICACRS);2022-12-13

3. Widened Thresholded Rider Optimization Algorithm for Optimal Switching Loss Reduction in Three-Phase Voltage Source Inverter;2022 International Conference on Automation, Computing and Renewable Systems (ICACRS);2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3