The gradual removal of Hertz pressure from the surface of elastic half-space

Author:

Kutsenko Anastasiia,Kutsenko Oleksii

Abstract

Contact stress determination in non-stationary dynamic loading of elastic bodies is crucial for modelling structures at high speeds, but it presents mathematical challenges due to the time-dependent and often unknown contact area size and shape. The study aims to obtain an energy remainder estimation that forms waves during the contact interaction of elastic bodies, based on the exact solutions of non-stationary problems for an elastic half-space. For this purpose, the problem of the instantaneous loading half-space as an additional research problem was reconstructed using the Hankel transform concerning a radial coordinate and the Laplace transform concerning a time variable. The method of derivation of the displacements at an elastic half-space loaded (unloaded) gradually by Hertz's contact pressure has been proposed. Its availability made it possible to pass to the solution of the main problem – the problem of gradual loading of the half-space surface by Hertz pressure. The possibility of changing of the order of differentiation and integration operations in the obtained representation is substantiated based on the integrand properties. The cases when the speed of the indenter was constant when its motion was uniformly accelerated and when the motion corresponded to the law of the first quarter of the cosine period in the time were considered. It was concluded that the distribution of dynamic contact stresses is similar to the Hertz distribution. An estimation of the part of the energy spent on the formation of elastic waves was made for various laws of unloading. The practical significance of this study lies in its development of an effective method for calculating normal displacements on a loading area in dynamic contact interactions of elastic bodies, which can be valuable for modelling structures at high speeds

Publisher

National University of Life and Environmental Sciences of Ukraine

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3