Research and analysis of new generation nuclear reactors in the world

Author:

Malogulko Juliya,Sikorska Olena,Teptia Vira,Povstianko Kateryna,Ostra Natalia

Abstract

The research of new nuclear reactors is gaining urgent importance worldwide due to the need for continuous improvement of technologies to ensure safety, efficiency, and emissions reduction. This is crucial in the context of climate change and rapid technological development, which demand constant updating and improvement of nuclear energy. The objective of the study was to analyse next-generation reactors worldwide and identify their advantages and potential prospects for the future. The research utilized statistical, comparative, and analytical methods. The results of the analysis considered contemporary technological and safety parameters related to the operation of such reactors, including their ability to optimize fuel usage, enhance operational safety, and effectively manage radioactive waste. As a result of the study, fourth-generation nuclear reactors were analysed, including fast neutron reactors using gas cooling, very high-temperature reactors, reactors using sodium as a coolant, fast neutron reactors with lead cooling, reactors where the reaction occurs in molten salt, and supercritical water-cooled reactors. Each of these reactors has its unique features that make them distinctive in their application. For example, gas-cooled reactors have high productivity due to their ability to achieve high temperatures without significant pressure. On the other hand, molten salt reactors offer flexibility in using different types of fuel, including spent fuel, and can help reduce the level of radioactive waste through the use of special materials. During the analysis, it was noted that fourth-generation reactors, using various cooling and reaction-slowing technologies, are characterized by high efficiency, low accident risk, and the ability to produce stable electricity. Improved methods of reaction control open up new possibilities for the efficient production of electricity and increased safety in nuclear energy. The practical significance of the research lies in the opportunity to enhance modern electricity production technologies and ensure greater safety and efficiency in the field of nuclear energy

Publisher

National University of Life and Environmental Sciences of Ukraine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3