EVALUATION OF FIELD-BASED BURN INDICES FOR ASSESSING FOREST FIRE SEVERITY IN LUHANSK REGION, UKRAINE

Author:

SOSHENSKYI O.,MYRONIUK V.,ZIBTSEV S.,HUMENIUK V.,LASHCHENKO A.

Abstract

Evaluation of forest fire severity is a basis of post-fire forest management. Remote sensing-based methods enable reliable delineation of fire perimeters, however, assessments of the degree of forest damage need to be verified and adjusted through field sampling. The forest damage assessment conducted in this study is useful for practitioners to understand and justify the design of clear cuts for restoration purposes. Thus, the aim of the study is to verify the different approaches to field assessment of forest fire severity. In this paper, the authors present a site-specific assessment of large wildfires in Luhansk oblast, Ukraine occurred in 2020 using field-based burn severity indices. The Composite Burn Index (CBI) and the Geometrically Structured Composite Burn Index (GeoCBI) were used to estimate the extent of forest damage. The Burned Area Emergency Response (BAER) methodology was also tested to assess the extent of soil damage. The authors used PlanetScope images to delineate perimeters of burned areas. These perimeters were overlaid over a forest inventory database to extract forest attributes and site characteristics for all forested and unforested areas affected by fires. Within the fire perimeters, the burned area was stratified into six strata to independently account for forest damage in diverse types of land cover. In total 73 test plots were proportionally distributed among different classes of land cover to assess fire severity using CBI, GeoCBI, and BAER approaches. It was found that the fire’s footprints covered 39,782 hectares. Among that area, 21.2% were forested lands. About 78% of burned forests were pine plantations. The highest fire intensity levels were estimated within pure pine plantations that were grown in very dry sites, while the lowest ones were associated with hardwoods forests in moisture site conditions. The average estimates of fire severity using the field-based indices varied within strata (CBI>GeoCBI) which could be an issue for assessing burn severity using remote sensing-based approaches. The authors also concluded that the BAER methodology contributed less to assessing the fire intensity because soil burn severity is not directly related to vegetation damage. This work creates a foundation for further assessment of fire severity using satellite imagery. As a result of this study, a spatial data set of sample plots was proposed that can facilitate calibrating approaches used to map fire severity in the region

Publisher

National University of Life and Environmental Sciences of Ukraine

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3