DETECTING THE INFORMATION SECURITY ANOMALIES BASED ON AN ENTROPY ANALYSIS OF THE INFORMATION SYSTEM

Author:

Panchenko M.,Bigdan A.,Babenko T.,Tymofieiev D.

Abstract

Measures to protect against cyberattacks are unable to provide a 100% guarantee that an attacker cannot penetrate an information system. If an attacker has gained access to the system, then such actions should be detected as soon as possible and interrupt access, as well as an investigation to fix security gaps. Methods used to detect attacks are divided into detecting misuse and detecting anomalies. This paper investigates the applicability of a frequency method that detects anomalies in the system by analyzing the entropy of the event log. This method is typically used to detect anomalies in network traffic, and unauthorized activities can also be indicated by anomalies in the hosts' event log. Studies on the Windows event log have shown that by analyzing the entropy, it is possible to detect exceeding the security thresholds by the number of different messages in the event log. This may indicate anomalies in the operation of the information system. The proposed method can be integrated into intrusion detection systems that notify the security administrator of possible violations.

Publisher

National University of Life and Environmental Sciences of Ukraine

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference8 articles.

1. Smith, Z. M., Lostri, E., Lewis, J. A. (2020). The Hidden Costs of Cybercrime. McAfee. Available at: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf

2. Kolodchak, O. (2012). Suchasni metody vyiavlennia anomalii v systemakh vyiavlennia vtorhnen. [Modern methods of detecting anomalies in intrusion detection systems]. Visnyk Natsionalnoho un-tu «Lvivska politekhnika». Komp’iuterni systemy ta merezhi, 745, 98–104. Available at: https://science.lpnu.ua/sites/default/files/journal-paper/2017/nov/6726/16-98-104.pdf

3. Kazmirchuk, S. V., Korchenko, A. O., Parashchuk, T. I. (2018). Analiz system vyiavlennia vtorhnen [Analysis of intrusion detection systems]. Ukrainian Information Security Research Journal, 20(4). Available at: https://doi.org/10.18372/2410-7840.20.13425

4. Ruban, I. V., Martovytskyi, V. O., Partyka, S. O. (2016). Klasyfikatsiia metodiv vyiavlennia anomalii v informatsiinykh systemakh [Classification of methods for detecting anomalies in information systems]. Systemy ozbroiennia i viiskova tekhnika, (3), 100-105. Available at: http://nbuv.gov.ua/UJRN/soivt_2016_3_24

5. Radivilova, T., Kirichenko, L., Tawalbeh, M., Ilkov, A. (2021). Vyiavlennia anomalii v telekomunikatsiinomu trafiku statystychnymy metodamy [Detection of anomalies in the telecommunications traffic by statistical methods]. Cybersecurity: Education, Science, Technique, 11(3), 183–194. Available at: https://doi.org/10.28925/2663-4023.2021.11.183194

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3