Land cover classification and urbanization monitoring using Landsat data: A case study in Changsha city, Hunan province, China

Author:

Kutia Mykola,Li Jiawei,Sarkissian Arbi,Pagella Tim

Abstract

The United Nations predicts that by 2050, 64.1% of the developing world and 85.9% of the developed world will be urbanized. This has resulted in a rapid change in land use and land cover types in the areas surrounding cities in all countries, particularly in China, which determines the relevance of this article. The aim of the study was to evaluate the dynamics of land cover change in Changsha City, Hunan Province, China, between 2005 and 2020, using Landsat time series satellite images and the Random Forest classification algorithm. The data acquisition, pre-processing, and analysis were conducted on the Google Earth Engine (GEE) publicly available online platform. Land cover thematic continuous raster maps were produced using ESRI ArcGIS 10.5.1 software. The overall classification accuracy was obtained by more than 83% for every produced map and the Kappa coefficient was 0.84 and higher, which approves the reliable classification results that are close to similar recent studies in terms of obtained accuracy. The study shows that from 2005 to 2020, the area of settlement in Changsha City, China, increased significantly, with an exponential increase in urban area from 3.23% to 15.95%. The proportion of forest cover gradually decreased from 2005 to 2015 but increased from 2015 to 2020. Cropland was the second most dominant land cover type, with a peak of almost 50% in 2010. Water bodies remained stable at around 3%. The proportion of open soil and bare land cover fluctuated between 180 and 400 km2 (1.5-3%). The study suggests that the offered monitoring approach provides reliable results, and the research findings can be used for sustainable urban planning and management, as well as conservation and development initiatives. The remote sensing data and advanced GIS technologies can provide decision-makers with the accurate data to ensure sustainable development in this area

Publisher

National University of Life and Environmental Sciences of Ukraine

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3