Influence of the canal width and depth on the resistance of 750 DWT Perintis ship using CFD simulation

Author:

Hadi Eko Sasmito, ,Tuswan Tuswan,Azizah Ghina,Ali Baharuddin,Samuel Samuel,Hakim Muhammad Luqman,Hadi Muhammad Raaflie Caesar Putra,Iqbal Muhammad,Sari Dian Purnama,Satrio Dendy, , ,

Abstract

Investigation of hydrodynamic interaction between the vessel and the seabed when entering shallow water is considered one of the most critical considerations of inland waterway transport. There are many investigations into the behavior of ships in restricted waters, such as ships traveling in different forms of canal cross-sections. The present study aims to evaluate the hydrodynamic interaction of the 750 DWT Perintis Ship moving through the different canal types to determine the relative effects of limiting the width and depth cross section on the ship's resistance. Two different canals with different cross sections, including canal bank and rectangular canal, were evaluated to investigate the influence of canal width (Wb), depth ratio (hw/T), and blockage ratio function (As/Ac). The Computational Fluid Dynamic (CFD) method with Reynolds-averaged Navier–Stokes (RANS) solver and turbulent model 𝑘−𝜀 were used to predict the total resistance of the ship. The proposed numerical simulation was initially validated with an experimental towing tank test in the error range of 0.11-7.74%. The results indicated similar phenomena were found both in rectangular and canal banks. The case with a shallower (lower hw/T) and a narrower (lower Bc/Bs) canal dimension has a higher resistance value. Backflow and subsidence of free surface became significant around the ship's hull in more restricted water, changing the ship's hydrodynamic characteristics and increasing resistance. It can be found that the higher the blockage ratio (mb), the higher the total resistance value in both canal types, which proved that ships with higher speeds were more sensitive to changes in waterway restrictions.

Publisher

Faculty of Mechanical Engineering and Naval Architecture, Univ. of Zagreb

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3