A comparison of regression models for the ice loads measured during the ice tank test

Author:

Lee Seung Jae, ,Jung Kwang Hyo,Ku Namkug,Lee Jaeyong

Abstract

To evaluate the time-domain positioning performance of arctic marine structures, it is necessary to generate an ice load appropriate for the current position and heading of the structure. The position and orientation angle of a floating body continuously change with time. Therefore, an ice load is required for any attitude in the time-domain simulation. In this study, we present a fundamental technique for analyzing ice loads in the frequency domain based on data measured at various angles in the ice-water tank experiment. We perform spectral analysis instead of general FFT to analyze the ice load, which has the characteristics of a random signal. To generate the necessary ice load in the time domain, we must first interpolate the measured data in the frequency domain. Using the Blackman-Tukey method, we estimate the spectrum for the measured data, then process the data to generate the training set required for machine learning. Based on the results, we perform regression analysis by applying four representative techniques, including linear regression, random forest, or neural network, and compare the results with MSE. The deep neural network method performed best, but we provide further discussion for each model.

Publisher

Faculty of Mechanical Engineering and Naval Architecture, Univ. of Zagreb

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3