NUMERICAL INVESTIGATIONS ON THE EFFECTS OF SEABED SHALLOW SOILS ON A TYPICAL DEEPWATER SUBSEA WELLHEAD SYSTEM

Author:

Zhou Xingkun, ,Chen Jinghao,Ge Zhengguang,Zhao Tong,Li Wenhua, ,

Abstract

Deepwater subsea wellheads may be significantly threatened under extreme sea conditions and operations, especially when the seabed is composed of very soft clay properties. A numerical model of a deepwater wellhead system is established using the classic ocean pipe element and nonlinear spring element of ANSYS to examine the behaviors of subsea wellheads in diverse seabed soil. Nonlinear spring elements coded in the APDL language are used to model three types of seabed soils: very soft soil, soft soil, and firm soil. The dynamic and quasi-static behaviors of the wellhead system in the typical coupled and decoupled models of the drilling riser system are particularly investigated in depth. The effects of the nonlinear seabed soil properties on the detailed wellhead are realistically simulated using time domain and extremum analysis. The results show that the softer the seabed soil, the greater the displacement, rotation angle, curvature, and bending moment of deepwater subsea wellheads. When the seabed soil reaches a particular depth, the mechanical characteristics of the wellheads under the three types of seabed soil conditions are almost simultaneously close to zero. Overall, several conclusions reached in this study may provide some useful references for design and stability analysis.

Publisher

Faculty of Mechanical Engineering and Naval Architecture, Univ. of Zagreb

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3