SELECTION OF WELDING CONDITIONS FOR MINIMIZING THE RESIDUAL STRESSES AND DEFORMATIONS DURING HARD-FACING OF MILD STEEL

Author:

Savaş Atilla,

Abstract

Hard-facing process is widely used for improving the wear resistance of mild steel. During the application of hard-facing, due to high temperatures, residual stresses and deformations may occur. The tensile residual stresses may cause crack propagation on the hard-faced part. The purpose of this study is to utilise minimum computer work for minimizing these residual stresses and deformations during the hard-facing of mild steel. The fully coupled transient heat transfer and structural analysis was performed for calculations. The double-ellipsoidal moving heat source was utilised to simulate the heat input from the gas metal arc welding (GMAW). Only eight numerical simulations were performed to minimize the computer work; the grey relational analysis was used for minimizing both the residual stresses and deformations. Welding speed, welding current, and welding pattern were considered as changing parameters. At the end of the numerical and statistical solutions, it is observed that heat input should be kept minimum to minimize the stresses and deformations. But it is obvious that the heat input must provide a temperature greater than the melding point. Straight patterns always produce better results for minimizing stresses and deformations. Transverse stress at the beginning and end of the longitudinal path gets higher significantly after cooling. Cooling does not affect the total deformation.

Publisher

Faculty of Mechanical Engineering and Naval Architecture, Univ. of Zagreb

Subject

Mechanical Engineering,Ocean Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3