Comparative evaluation of wear resistance between lithium disilicates and polymer infiltrated ceramics manufactured by computer aided design (CAD) computer aided manufacturing (CAM) against natural tooth enamel

Author:

Reddy Dendi Archita1ORCID,Reddy K. Mahendranadh1

Affiliation:

1. Crown and Bridge znd Implantology, Vikarabad, Telangana, India

Abstract

Advances in CAD/CAM technology led to development of monolithic all ceramic restorations with superior esthetics like Lithium disilicate. But the major concern of ceramic materials was its wear towards the opposing enamel. Polymer infiltrated ceramics were developed by incorporating resin polymer in ceramics to produce esthetic stability of ceramics and low abrasive nature of composites and very few studies were done on this material. A total of 30 disc specimens were fabricated by CAD/CAM .15 discs of CAD/CAM lithium disilicate (IPS E.max CAD) and 15 discs of Polymer infiltrated ceramics of dimensions 10mmx3mm. They were named as group 1 (CAD/CAM Lithium disilicate) and group 2(Polymer infiltrated ceramics). 30 tooth specimens were mounted on auto polymerising acrylic resin blocks. Tooth specimens were placed on the upper member of the two body wear testing machine (Pin on disc wear and friction test rig, Magnum) and Lithium disilicate and polymer infiltrated ceramic disc specimens were positioned on disc of wear testing apparatus under constant load of 5kg (49N). The specimens were made to rub against one another in a rotating cycle to simulate oral wear cycle. The test was run for total of 10,000 wear cycles at 30rpm on wear machine for each sample. Wear of group 1 and group 2 and enamel wear of group 1 and group 2 was measured before and after wear test by profile projector.Wilcoxon test was done to compare the groups. Results showed that wear was greater in group 1 (Polymer infiltrated ceramics) compared to group 2 (CAD/CAM Lithium disilicate) and enamel wear of group 1 was greater than enamel wear of group 2. Advances in CAD/CAM technology led to development of aesthetic all ceramic restorations with superior mechanical properties such as CAD/CAM Lithium disilicate. But the major concern of ceramic materials is wear towards the opposing enamel. To meet the above requirements polymer infiltrated ceramics are developed by incorporating resin polymer in ceramics to produce esthetic stability of ceramics and low abrasive nature of composites. The restorative materials should not cause wear to opposing enamel and also should possess wear resistance similar to enamel for its success and longevity. This study was performed to evaluate the wear resistance of CAD/CAM lithium disilicate and Polymer infiltrated ceramics against natural teeth enamel.

Publisher

IP Innovative Publication Pvt Ltd

Subject

Colloid and Surface Chemistry,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3