An advance of complex multifaceted root learning for parkinson behavior using subthalamic nucleus biomarkers

Author:

Raju Venkateshwarla Rama1,Rani Balmuri Kavitha2,Srinivas Konda,Madhukar G.

Affiliation:

1. CMR College of Engineering & Technology, Hyderabad, Telangana, India

2. C

Abstract

Though DBS is suiting well to Parkinson`s still its current version being modified now and often as suggested by the neuroscientists. The technique has gained an effectual management surgical therapy concerned to PD, explicitly whilst growing idea as an effectual method to alleviate Parkinson’s disease and other movement disorders. The present ver.1 indirect DBS is an open loop based and its parameters are changeable manually and there is no provision to adjust automatically or online based on Parkinson diseased behavior and performance. Hence, supervised classification of patient behavior is a major and significant step towards the design of next generation DBS systems which are adaptive closed loop based. The work in this study demonstrates a supervised classification machine learning (CML, i.e., multiple kernel learning M-K-L) method to distinguish such cognitive behavioral tasks by using the subthalamic nuclei (STN) biomarkers, i.e., biomedical data of microelectrode recording (MER) bio signals (or local field potential LFP). We applied the time domain and frequency domain representation spectrograms of the raw data acquired from right and left hemisphere brain`s STNs as the feature vectors. Following the feature extractions, we combined those features via support vector machines (SVMs) with complex multifaceted root learning, i.e., C-M-L or multi kernel learning (M-K-L) formulation. The C-M-L based classification techniques were applied to a class and categorize different tasks such as switch (push-pull button), movement of jaws, vocalizations, plus movement of arm due to the tremor. Our experiments show that the l - n o r m C-M-L/M-K-L radically smash distinct kernel SVM-based classifiers in classifying behavioral tasks of five subjects even using signals acquired with a low sampling rate of 10 Hz. This leads to a lower computational cost.

Funder

DST-CSRI, Dept. of Science & Technology, Ministry of Science & Technology, Government of India, New Delhi

Publisher

IP Innovative Publication Pvt Ltd

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3