Study of event-driven and periodic rescheduling on a single machine with unexpected disruptions

Author:

Tawfeek Moaz Magdy,Sadek Yomna Mahmoud,El-kharbotly Amin Mohamed Kamel

Abstract

This paper studies the rescheduling problem of a single machine facing unexpected disruptions in order to determine which parameters can help reducing the negative impacts of these disruptions on schedule performance. A Genetic Algorithm (GA) is used to generate the initial schedule and the updated ones according to a reactive strategy. The performance of event-driven rescheduling and periodic rescheduling policies are compared in terms of total tardiness and total cost of rescheduling. Other factors that may affect rescheduling such as disruption time, disruption duration and number of disruptions are investigated. The sensitivity of results to both due date tightness and cost factor variation is tested. The results showed that the timing of the occurrence of disruption as related to scheduling horizon has a major effect on determining the best rescheduling policy. Event-driven policy is superior to other policies for short infrequent disruptions. It was found that the periodic policy is more appropriate for long and frequent disruptions.

Publisher

Independent Journal of Management and Production

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3