Optimization of machining characteristics during helical milling of AISI D2 steel considering chip geometry

Author:

Vookoti Uma Sai Vara Prasad,K. Venkata Rao,P. Satish Kumar

Abstract

Helical milling is one of the high-performance and high-quality hole manufacturing activities with strong prospects for the automotive and aerospace industries. Literature suggests chip geometry plays a significant role in optimizing machining operations. In the present study, a mechanistic approach is used to estimate the chip geometry, cutting force and power/energy consumption concerning the tool rotation angle. Experiments are conducted at different levels of spindle rotational speed, cutter orbital speed and axial depth of cuts using 8 and 10 mm diameter mill cutters. Experimental results for cutting speed in X, Y and Z directions are measured. A hybrid approach, which combines the Taguchi method and Graph theory and matrix approach (GTMA) technique is used and optimized process parameters. The highest aggregate utility process parameters are met by 2000 rpm spindle speed, 50 rpm orbital speed and 0.2 mm axial cutting depth during helical milling of AISI D2 steel. FEM simulation is used for predicting the chip thickness, cutting forces and power consumption and also validated the optimization.

Publisher

Independent Journal of Management and Production

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3