Optimal Explanation Generation using Attention Distribution Model

Author:

Bairy Akhila,Fränzle Martin

Abstract

With highly automated and Autonomous Vehicles (AVs) being one of the most prominent emerging technologies in the automotive industry, efforts to achieve SAE Level 3+ vehicles have skyrocketed in recent years. As new technologies emerge on a daily basis, these systems are becoming increasingly complex. To help people understand - and also accept - these new technologies, there is a need for explanation. There are three essential dimensions to designing explanations, namely content, frequency, and timing. Our goal is to develop an algorithm that optimises explanation in AVs. Most of the existing research focuses on the content of an explanation, whereas the fine-granularity of the frequency and timing of an explanation is relatively unexplored. Previous studies concerning "when to explain" have tended to make broad distinctions between explaining before, during or after an action is performed. For AVs, studies have shown that passengers prefer to receive an explanation before an autonomous action takes place. However, it seems likely that the acclimatisation that occurs through prolonged exposure to and use of a particular AV will reduce the need for explanation. As comprehension of explanations is workload-intensive, it is necessary to optimise both the frequency, i.e. skipping explanations when they are not helpful to reduce workload, and the precise point in time when an explanation is given, i.e. giving an explanation when it provides the maximum workload reduction. Extra mental workload for passengers can be caused by both giving and omitting an explanation. Every explanation that is presented requires cognitive processing in order to be understood, even if its content is considered to be redundant or if it will not be remembered by the addressee. On the other hand, skipping the explanation can cause the passenger to actively scan the environment for potential cues themselves, if necessary. Such an attention strategy would also impose a significant cognitive load on the passenger. In our work, to predict the mental workload of the passenger, we use the state-of-the-art attention model called SEEV (Salience, Effort, Expectancy, and Value). The SEEV model is dynamically used for forecasting the likelihood of the direction of attention. Our work aims to generate an optimally timed strategy for presenting an explanation. Using the SEEV model we build a probabilistic reactive game, i.e., 1.5-player game or Markov Decision Process, and we use reactive synthesis to generate an optimal reactive strategy for presenting an explanation that minimises workload.

Publisher

AHFE International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. What Level of Power Should We Give an Automation?;Communications in Computer and Information Science;2024

2. What to tell when? – Information Provision as a Game;Electronic Proceedings in Theoretical Computer Science;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3