A Landmark Detection and Iris Prediction Dataset for Gaze Tracking Research

Author:

Thaman Brett,Caporusso Nicholas,Cao Trung

Abstract

Gaze tracking has become an established technology that enables detecting the position of the eyes and using it for estimating where the user is looking. In the last decades, gaze tracking has been realized primarily with dedicated devices utilizing infrared (IR) sensors, though the requirement of adopting specific hardware has limited gaze tracking and its use in potential large-scale applications. In the last decade, several research groups have pursued the development of gaze tracking solutions based on computer vision and traditional RGB cameras such as webcams embedded in portable computers and mobile devices. Unfortunately, previous studies have shown that gaze tracking systems based on RGB cameras have significantly lower accuracy, are not suitable for tasks that require precise user control, and require further research and development. Recently, TensorFlow released a landmark detection library that predicts the location of key points of the human face, including the position of the eyes. The algorithm outputs approximately 500 features in which each point is represented as a series of coordinates on a three-dimensional space. Although TensorFlow’s landmark detection algorithm could potentially be utilized for gaze tracking tasks, the number and complexity of its features make it unpractical to use it for real-time gaze prediction without further feature extraction and dimensionality reduction. In this paper, we introduce and discuss a dataset designed for stimulating screen-based gaze tracking research aimed at replacing traditional IR devices with standard RGB cameras. Our objective was to label the features estimated by TensorFlow’s landmark detection and iris prediction model with the actual location of the user’s gaze on a screen. To this end, we collected data from 30 users who were involved in gaze tracking tasks. Each sample in our dataset includes all the features of TensorFlow’s landmark detection and iris prediction model and two different labels representing (1) the actual gaze location acquired with a dedicated IR sensor, and (2) a reference point. In this paper, we detail the data collection software and procedure, we describe the dataset, and we discuss its potential use in advancing gaze tracking research.

Publisher

AHFE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Regression Models for Real-Time Touchless Interaction Applications;2023 IEEE 8th International Conference On Software Engineering and Computer Systems (ICSECS);2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3