Improving the accuracy of object classification on the ground based on a combination of sensory modalities using binary cross-tropism as a loss function.

Author:

Legkobyt V.,Stotskiy I.,Karpenko A.

Abstract

In today's warfare environment, software based on machine learning techniques for detecting and classifying infrastructure objects on the ground has become extremely important. In this regard, the task of improving the accuracy of classification of objects on the ground is becoming more urgent, as the use of UAVs and space systems is vital for intelligence activities. Given the nature of the input data, namely static terrain images obtained in the form of satellite images and UAV camera images, it is advisable to use convolutional neural networks to solve classification problems. In most cases, satellite images are presented in the form of multispectral and hyperspectral images, so publicly available datasets offered by the SpaceNet research community were used to train the model. An important step in preparing the training set is image orthorectification, namely adding 3D surface information to the images, which provides the model with important geometric information for semantic classes such as buildings and other structures, corrects geometric distortions, and helps the model to recognize objects in a consistent geospatial context. In the course of the experiments, the SegNet model was trained with and without the normalized Digital Surface Model (nDSM). The experimental results show that the generalized classification accuracy for six classes of objects on the test dataset increases by 23.9%. And experiments with training set limitation demonstrate that, if necessary, it is enough to use half of the available training data set to obtain only 4% lower classification accuracy and save about 10 hours of training.

Publisher

Scientific Journals Publishing House

Reference13 articles.

1. Козуб А. М., Шумейко В. О., Зуйко В. В., Ніколаєнко О. Є. Аналіз досвіду використання космічних систем та безпілотних авіаційних комплексів в сучасних локальних конфліктах та перспективи їх розвитку // НУОУ. Сучасні інформаційні технології у сфері безпеки та оборони. 2018. № 3 (33).

2. Епішев В. П., Мотрунич І. І., Періг В. М., Кудак В. І., Найбауер І. Ф., Сухов П. П., Кашуба В. І., Сухов К. П., Варламов І. Д., Албул В. В., Москаленко С. С., Мисливий С. О. Можливості національних оптичних засобів спостереження за космічним простором щодо контролю геостаціонарної орбіти у інтересах збройних сил України // НУОУ. Сучасні інформаційні технології у сфері безпеки та оборони. 2018. № 3 (33).

3. ImageNet: website. URL: https://www.image-net.org/index.php.

4. M. Weinmann and M. Weinmann. Geospatial computer vision based on multi-modal data. 2018. DOI: 10.3390/rs10010002.

5. Goldberg H., Brown M. and Wang S. A benchmark for building footprint classification using orthorectified rgb imagery and digital surface models from commercial satellites. Proceedings of IEEE applied imagery pattern recognition workshop. 2017. DOI: 10.1109/AIPR.2017.8457973.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3