Emulating human observers with bayesian binning

Author:

Endres Dominik1,Christensen Andrea1,Omlor Lars1,Giese Martin A.1

Affiliation:

1. University of Tübingen and Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience, Tübingen, Germany

Abstract

Natural body movements arise in the form of temporal sequences of individual actions. During visual action analysis, the human visual system must accomplish a temporal segmentation of the action stream into individual actions. Such temporal segmentation is also essential to build hierarchical models for action synthesis in computer animation. Ideally, such segmentations should be computed automatically in an unsupervised manner. We present an unsupervised segmentation algorithm that is based on Bayesian Binning (BB) and compare it to human segmentations derived from psychophysical data. BB has the advantage that the observation model can be easily exchanged. Moreover, being an exact Bayesian method, BB allows for the automatic determination of the number and positions of segmentation points. We applied this method to motion capture sequences from martial arts and compared the results to segmentations provided by humans from movies that showed characters that were animated with the motion capture data. Human segmentation was then assessed by an interactive adjustment paradigm, where participants had to indicate segmentation points by selection of the relevant frames. Results show a good agreement between automatically generated segmentations and human performance when the trajectory segments between the transition points were modeled by polynomials of at least third order. This result is consistent with theories about differential invariants of human movements.

Funder

Seventh Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Reference24 articles.

1. Geometric structure and chunking in reproduction of motion sequences

2. Interactive motion generation from examples

3. Bishop C. M. 2007. Pattern Recognition and Machine Learning. Springer. Bishop C. M. 2007. Pattern Recognition and Machine Learning. Springer.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3