IRTS: An Intelligent and Reliable Transmission Scheme for Screen Updates Delivery in DaaS

Author:

Zheng Hongdi1,Wang Junfeng1,Zhang Jianping2,Li Ruirui3

Affiliation:

1. Sichuan University, Chengdu, China

2. The Second Research Institute of Civil Aviation Administration of China, Chengdu, China

3. Beijing Futong Dongfang Technology Co. Ltd., Beijing, China

Abstract

Desktop-as-a-service (DaaS) has been recognized as an elastic and economical solution that enables users to access personal desktops from anywhere at any time. During the interaction process of DaaS, users rely on screen updates to perceive execution results remotely, and thus the reliability and timeliness of screen updates transmission have a great influence on users’ quality of experience (QoE). However, the efficient transmission of screen updates in DaaS is facing severe challenges: most transmission schemes applied in DaaS determine sending strategies in terms of pre-set rules, lacking the intelligence to utilize bandwidth rationally and fit new network scenarios. Meanwhile, they tend to focus on reliability or timeliness and perform unsatisfactorily in ensuring reliability and timeliness simultaneously, leading to lower transmission efficiency of screen updates and users’ QoE when network conditions turn unfavorable. In this article, an intelligent and reliable end-to-end transmission scheme (IRTS) is proposed to cope with the preceding issues. IRTS draws support from reinforcement learning by adopting SARSA, an online learning method based on the temporal difference update rule, to grasp the optimal mapping between network states and sending actions, which extricates IRTS from the reliance on pre-set rules and augments its adaptability to different network conditions. Moreover, IRTS guarantees reliability and timeliness via an adaptive loss recovery method, which intends to recover lost screen updates data automatically with fountain code while controlling the number of redundant packets generated. Extensive performance evaluations are conducted, and numerical results show that IRTS outperforms the reference schemes in display quality, end-to-end delay/delay jitter, and fairness when transferring screen updates under various network conditions, proving that IRTS can enhance the transmission efficiency of screen updates and users’ QoE in DaaS.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Basic Research Program of China

Technology Research and Development Program of Sichuan, China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference49 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transportation of Service Enhancement Based on Virtualization Cloud Desktop;Electronics;2023-03-27

2. DNA Computing-Based Multi-Source Data Storage Model in Digital Twins;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3