1. Md. Sabbir Ahmed . 2020. UCI - Rice Leaf Diseases Data Set (augmented). https://www.kaggle.com/datasets/badhon7432/paddyleafdiseaseuci. [Online ; accessed 2022 -11-24]. Md. Sabbir Ahmed. 2020. UCI - Rice Leaf Diseases Data Set (augmented). https://www.kaggle.com/datasets/badhon7432/paddyleafdiseaseuci. [Online; accessed 2022-11-24].
2. Bifta Sama Bari , Md Nahidul Islam , Mamunur Rashid , Md Jahid Hasan , Mohd Azraai Mohd Razman , Rabiu Muazu Musa, Ahmad Fakhri Ab Nasir, and Anwar P.P. Abdul Majeed. 2021 . A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. PeerJ Computer Science 7 (April 2021), e432. https://doi.org/10.7717/peerj-cs.432 10.7717/peerj-cs.432 Bifta Sama Bari, Md Nahidul Islam, Mamunur Rashid, Md Jahid Hasan, Mohd Azraai Mohd Razman, Rabiu Muazu Musa, Ahmad Fakhri Ab Nasir, and Anwar P.P. Abdul Majeed. 2021. A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. PeerJ Computer Science 7 (April 2021), e432. https://doi.org/10.7717/peerj-cs.432
3. Paddy Plant Disease Identification and Classification of Image Using AlexNet;Bharathi R Jeya;Model. Int. J. Anal. Exp. modal Anal.,2020
4. Konstantinos P. Ferentinos . 2018. Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture 145 (Feb . 2018 ), 311–318. https://doi.org/10.1016/j.compag.2018.01.009 10.1016/j.compag.2018.01.009 Konstantinos P. Ferentinos. 2018. Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture 145 (Feb. 2018), 311–318. https://doi.org/10.1016/j.compag.2018.01.009
5. Food and Agriculture Organization (FOA). 2022. India at a glance. https://www.fao.org/india/fao-in-india/india-at-a-glance/en/. [Online ; accessed 2022 -11-24]. Food and Agriculture Organization (FOA). 2022. India at a glance. https://www.fao.org/india/fao-in-india/india-at-a-glance/en/. [Online; accessed 2022-11-24].