BARRACUDA: binary-level analysis of runtime RAces in CUDA programs

Author:

Eizenberg Ariel1,Peng Yuanfeng1,Pigli Toma1,Mansky William2,Devietti Joseph1

Affiliation:

1. University of Pennsylvania, USA

2. Princeton University, USA

Abstract

GPU programming models enable and encourage massively parallel programming with over a million threads, requiring extreme parallelism to achieve good performance. Massive parallelism brings significant correctness challenges by increasing the possibility for bugs as the number of thread interleavings balloons. Conventional dynamic safety analyses struggle to run at this scale. We present BARRACUDA, a concurrency bug detector for GPU programs written in Nvidia’s CUDA language. BARRACUDA handles a wider range of parallelism constructs than previous work, including branch operations, low-level atomics and memory fences, which allows BARRACUDA to detect new classes of concurrency bugs. BARRACUDA operates at the binary level for increased compatibility with existing code, leveraging a new binary instrumentation framework that is extensible to other dynamic analyses. BARRACUDA incorporates a number of novel optimizations that are crucial for scaling concurrency bug detection to over a million threads.

Funder

National Science Foundation

Nvidia

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural testing for CUDA programming model;Concurrency and Computation: Practice and Experience;2024-04-09

2. DataRaceOnAccelerator – A Micro-benchmark Suite for Evaluating Correctness Tools Targeting Accelerators;Euro-Par 2019: Parallel Processing Workshops;2020

3. Can We Monitor All Multithreaded Programs?;Runtime Verification;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3