Gradual synthesis for static parallelization of single-pass array-processing programs

Author:

Fedyukovich Grigory1,Ahmad Maaz Bin Safeer1,Bodik Rastislav1

Affiliation:

1. University of Washington, USA

Abstract

Parallelizing of software improves its effectiveness and productivity. To guarantee correctness, the parallel and serial versions of the same code must be formally verified to be equivalent. We present a novel approach, called GRASSP, that automatically synthesizes parallel single-pass array-processing programs by treating the given serial versions as specifications. Given arbitrary segmentation of the input array, GRASSP synthesizes a code to determine a new segmentation of the array that allows computing partial results for each segment and merging them. In contrast to other parallelizers, GRASSP gradually considers several parallelization scenarios and certifies the results using constrained Horn solving. For several classes of programs, we show that such parallelization can be performed efficiently. The C++ translations of the GRASSP solutions sped performance by up to 5X relative to serial code on an 8-thread machine and Hadoop translations by up to 10X on a 10-node Amazon EMR cluster.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ASAC: A Benchmark for Algorithm Synthesis;Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering;2024-07-10

2. Weakest Precondition Inference for Non-Deterministic Linear Array Programs;Lecture Notes in Computer Science;2024

3. PyDaskShift: Automatically Convert Loop-Based Sequential Programs to Distributed Parallel Programs;Communications in Computer and Information Science;2024

4. C2TACO: Lifting Tensor Code to TACO;Proceedings of the 22nd ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences;2023-10-22

5. mlirSynth: Automatic, Retargetable Program Raising in Multi-Level IR Using Program Synthesis;2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT);2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3