Automatic program inversion using symbolic transducers

Author:

Hu Qinheping1,D'Antoni Loris1

Affiliation:

1. University of Wisconsin-Madison, USA

Abstract

We propose a fully-automated technique for inverting functional programs that operate over lists such as string encoders and decoders. We consider programs that can be modeled using symbolic extended finite transducers (), an expressive model that can describe complex list-manipulating programs while retaining several decidable properties. Concretely, given a program P expressed as an , we propose techniques for: (1) checking whether P is injective and, if that is the case, (2) building an P -1 describing its inverse. We first show that it is undecidable to check whether an is injective and propose an algorithm for checking injectivity for a restricted, but a practical class of . We then propose an algorithm for inverting based on the following idea: if an is injective, inverting it amounts to inverting all its individual transitions. We leverage recent advances program synthesis and show that the transition inversion problem can be expressed as an instance of the syntax-guided synthesis framework. Finally, we implement the proposed techniques in a tool called and show that can invert 13 out 14 real complex string encoders and decoders, producing inverse programs that are substantially identical to manually written ones.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Batch to Stream: Automatic Generation of Online Algorithms;Proceedings of the ACM on Programming Languages;2024-06-20

2. Adapting Behaviors via Reactive Synthesis;Computer Aided Verification;2021

3. A Decision Procedure for String to Code Point Conversion;Automated Reasoning;2020

4. Proving Unrealizability for Syntax-Guided Synthesis;Computer Aided Verification;2019

5. Chain-Free String Constraints;Automated Technology for Verification and Analysis;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3