A Joint Model for Representation Learning of Tibetan Knowledge Graph Based on Encyclopedia

Author:

Sun Yuan1,Chen Andong1,Chen Chaofan1,Xia Tianci1,Zhao Xiaobing1

Affiliation:

1. School of Information Engineering, Minzu University of China, Beijing, China

Abstract

Learning the representation of a knowledge graph is critical to the field of natural language processing. There is a lot of research for English knowledge graph representation. However, for the low-resource languages, such as Tibetan, how to represent sparse knowledge graphs is a key problem. In this article, aiming at scarcity of Tibetan knowledge graphs, we extend the Tibetan knowledge graph by using the triples of the high-resource language knowledge graphs and Point of Information map information. To improve the representation learning of the Tibetan knowledge graph, we propose a joint model to merge structure and entity description information based on the Translating Embeddings and Convolution Neural Networks models. In addition, to solve the segmentation errors, we use character and word embedding to learn more complex information in Tibetan. Finally, the experimental results show that our model can make a better representation of the Tibetan knowledge graph than the baseline.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3