Confidence-based stopping criteria for active learning for data annotation

Author:

Zhu Jingbo1,Wang Huizhen1,Hovy Eduard2,Ma Matthew3

Affiliation:

1. Northeastern University, China

2. University of Southern California, Marina del Rey, CA

3. Scientific Works, Princeton Junction, NJ

Abstract

The labor-intensive task of labeling data is a serious bottleneck for many supervised learning approaches for natural language processing applications. Active learning aims to reduce the human labeling cost for supervised learning methods. Determining when to stop the active learning process is a very important practical issue in real-world applications. This article addresses the stopping criterion issue of active learning, and presents four simple stopping criteria based on confidence estimation over the unlabeled data pool, including maximum uncertainty , overall uncertainty , selected accuracy, and minimum expected error methods. Further, to obtain a proper threshold for a stopping criterion in a specific task, this article presents a strategy by considering the label change factor to dynamically update the predefined threshold of a stopping criterion during the active learning process. To empirically analyze the effectiveness of each stopping criterion for active learning, we design several comparison experiments on seven real-world datasets for three representative natural language processing applications such as word sense disambiguation, text classification and opinion analysis.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3