A hop by hop rate-based congestion control scheme

Author:

Mishra Partho P.,Kanakia Hemant

Abstract

The flow/congestion control scheme of TCP is based on the sliding window mechanism. As we demonstrate in this paper, the performance of this and other similar end-to-end flow control schemes deteriorates as networks move to the gigabit range. This has been the motivation for our search for a new flow and congestion control scheme. In this paper, we propose as an alternative, a hop-by-hop rate-based mechanism for congestion control. Due to the increasing sophistication in switch architectures, to provide “quality of service” guarantees for real-time as well as bursty data traffic, the implementation of hop-by-hop controls has become relatively inexpensive. A cost-effective implementation of the proposed scheme for a multi-gigabit packet switch is described in [2]. In this paper, we present results of a simulation study comparing the performance of this hop-by-hop flow control scheme to two end-to-end flow control schemes. The results indicate that the proposed scheme displays stable behavior for a wide range of traffic conditions and diverse network topologies. More importantly, the performance of the scheme, measured in terms of the average number of occupied buffers, the end-to-end throughput, the network delay, and the link utilization at the bottleneck, is better than that of the end-to-end control schemes studied here. These results present a convincing case against popular myths about hop-by-hop control mechanisms.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3