Significance-Aware Program Execution on Unreliable Hardware

Author:

Parasyris Konstantinos1,Vassiliadis Vassilis1,Antonopoulos Christos D.1,Lalis Spyros1,Bellas Nikolaos1

Affiliation:

1. Centre for Research and Technology, Hellas 8 University of Thessaly

Abstract

This article introduces a significance-centric programming model and runtime support that sets the supply voltage in a multicore CPU to sub-nominal values to reduce the energy footprint and provide mechanisms to control output quality. The developers specify the significance of application tasks respecting their contribution to the output quality and provide check and repair functions for handling faults. On a multicore system, we evaluate five benchmarks using an energy model that quantifies the energy reduction. When executing the least-significant tasks unreliably, our approach leads to 20% CPU energy reduction with respect to a reliable execution and has minimal quality degradation.

Funder

Seventh Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ARETE: Accurate Error Assessment via Machine Learning-Guided Dynamic-Timing Analysis;IEEE Transactions on Computers;2023-04-01

2. Instruction-aware Learning-based Timing Error Models through Significance-driven Approximations;2022 IEEE 40th International Conference on Computer Design (ICCD);2022-10

3. HPAC;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2021-11-13

4. Boosting Microprocessor Efficiency: Circuit- and Workload-Aware Assessment of Timing Errors;2021 IEEE International Symposium on Workload Characterization (IISWC);2021-11

5. Exploring the potential of context-aware dynamic CPU undervolting;Proceedings of the 18th ACM International Conference on Computing Frontiers;2021-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3