Loop-aware optimizations in PyPy's tracing JIT

Author:

Ardö Håkan1,Bolz Carl Friedrich2,FijaBkowski Maciej3

Affiliation:

1. Centre for Mathematical Sciences, Lund University, Lund, Sweden

2. Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany

3. South Africa

Abstract

One of the nice properties of a tracing just-in-time compiler (JIT) is that many of its optimizations are simple, requiring one forward pass only. This is not true for loop-invariant code motion which is a very important optimization for code with tight kernels. Especially for dynamic languages that typically perform quite a lot of loop invariant type checking, boxed value unwrapping and virtual method lookups. In this paper we explain a scheme pioneered within the context of the LuaJIT project for making basic optimizations loop-aware by using a simple pre-processing step on the trace without changing the optimizations themselves. We have implemented the scheme in RPython's tracing JIT compiler. PyPy's Python JIT executing simple numerical kernels can become up to two times faster, bringing the performance into the ballpark of static language compilers.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3