Feedback techniques for continuity and synchronization in multimedia information retrieval

Author:

Rangan P. Venkat1,Ramanathan Srinivas2,Sampathkumar Srihari3

Affiliation:

1. Univ. of California, San Diego

2. Hewlett-Packard Labs., Palo Alto, CA

3. Univ. of California at San Diego, La Jolla

Abstract

Future advances in storage and networking technologies will make it feasible to build multimedia on-demand information servers capable of providing services similar to those of a neighborhood videotape rental store over metropolitan area networks. Such multimedia information servers must not only support retrieval of continuous media units (such as video frames and audio samples), but also preserve synchrony among playback of the different media components constituting a multimedia object. We develop techniques for supporting continuous and synchronous retrieval from multimedia servers. We present feedback techniques by which, during retrieval of multimedia objects from a multimedia server to mediaphones, the multimedia server uses lightweight messages called feedback units transmitted periodically back to it (by mediaphones) to detect impending discontinuities as well as asynchronies at mediaphones. The multimedia server then preventively readjusts media transmission so as to avoid either anomaly, and steers the mediaphones back to synchrony. Given the available buffer sizes at mediaphones and the maximum tolerable asynchrony, we present methods to determine the minimum rate at which feedback units must be transmitted so as to maintain both continuity and synchronization. These feedback techniques remain robust even in the presence of playback rate mismatches and network delay jitter, and their initial simulation for video-audio playback yields a feedback rate of one per 1,000 media units to keep the asynchrony within 250ms, showing that the overhead due to feedback transmission is very small. The constant rate feedback techniques developed in this article form the basis of a prototype on-demand information server being developed at the UCSD Multimedia Laboratory.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Reliable Scheme for Synchronizing Multimedia Data Streams under Multicasting Environment;Applied Sciences;2018-04-04

2. Buffer Management for Synchronous and Low-Latency Playback of Multi-Stream User-Generated Content;2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR);2018-04

3. Enhanced adaptive RTCP-based Inter-Destination Multimedia Synchronization approach for distributed applications;Computer Networks;2012-08

4. Ontology based session management protocol for teleteaching domain;2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE);2010-02

5. Multimedia group synchronization approach for one-way cluster-to-cluster applications;2009 IEEE 34th Conference on Local Computer Networks;2009-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3