Propagating Geometry Information to Finite Element Computations

Author:

Heltai Luca1,Bangerth Wolfgang2,Kronbichler Martin3,Mola Andrea1

Affiliation:

1. SISSA—International School for Advanced Studies, Trieste, Italy

2. Colorado State University, Fort Collins, CO

3. Technical University of Munich, Garching b. München, Germany

Abstract

The traditional workflow in continuum mechanics simulations is that a geometry description —for example obtained using Constructive Solid Geometry (CSG) or Computer Aided Design (CAD) tools—forms the input for a mesh generator. The mesh is then used as the sole input for the finite element, finite volume, and finite difference solver, which at this point no longer has access to the original, “underlying” geometry. However, many modern techniques—for example, adaptive mesh refinement and the use of higher order geometry approximation methods—really do need information about the underlying geometry to realize their full potential. We have undertaken an exhaustive study of where typical finite element codes use geometry information, with the goal of determining what information geometry tools would have to provide. Our study shows that nearly all geometry-related needs inside the simulators can be satisfied by just two “primitives”: elementary queries posed by the simulation software to the geometry description. We then show that it is possible to provide these primitives in all of the frequently used ways in which geometries are described in common industrial workflows, and illustrate our solutions using a number of examples.

Funder

PRIN

Regione FVG

Piano Operativo Regionale Fondo Europeo per lo Sviluppo Regionale

National Science Foundation

Cyberinfrastructure for Sustained Scientific Innovation

Computational Infrastructure in Geodynamics initiative

German Research Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3