Simple formulas for quasiconformal plane deformations

Author:

Lipman Yaron1,Kim Vladimir G.2,Funkhouser Thomas A.2

Affiliation:

1. Weizmann Institute

2. Princeton University, Princeton, NJ

Abstract

We introduce a simple formula for 4-point planar warping that produces provably good 2D deformations. In contrast to previous work, the new deformations minimize the maximum conformal distortion and spread the distortion equally across the domain. We derive closed-form formulas for computing the 4-point interpolant and analyze its properties. We further explore applications to 2D shape deformations by building local deformation operators that use thin-plate splines to further deform the 4-point interpolant to satisfy certain boundary conditions. Although this modification no longer has any theoretical guarantees, we demonstrate that, practically, these local operators can be used to create compound deformations with fewer control points and smaller worst-case distortions in comparisons to the state-of-the-art.

Funder

Natural Sciences and Engineering Research Council of Canada

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference18 articles.

1. Ahlfors L. 1966. Complex Analysis. Ahlfors L. 1966. Complex Analysis.

2. Principal warps: thin-plate splines and the decomposition of deformations

3. Desbrun M. Meyer M. and Alliez P. 2002. Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21. Desbrun M. Meyer M. and Alliez P. 2002. Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21.

4. Fletcher A. and Marković V. 2007. Quasiconformal Maps and Teichmüller Theory. Oxford Graduate Texts in Mathematics Oxford University Press. Fletcher A. and Marković V. 2007. Quasiconformal Maps and Teichmüller Theory. Oxford Graduate Texts in Mathematics Oxford University Press.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variational quasi-harmonic maps for computing diffeomorphisms;ACM Transactions on Graphics;2023-07-26

2. Recent Developments of Surface Parameterization Methods Using Quasi-conformal Geometry;Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging;2023

3. XMAP: Five-Point Interpolating Map;Computer-Aided Design;2022-01

4. Recent Developments of Surface Parameterization Methods Using Quasi-conformal Geometry;Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging;2022

5. Inversion-free geometric mapping construction: A survey;Computational Visual Media;2021-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3