A theory of monte carlo visibility sampling

Author:

Ramamoorthi Ravi1,Anderson John2,Meyer Mark2,Nowrouzezahrai Derek3

Affiliation:

1. University of California, Berkeley, CA

2. Pixar Animation Studios

3. Disney Research Zurich and University of Montreal, Canada

Abstract

Soft shadows from area lights are one of the most crucial effects in high-quality and production rendering, but Monte-Carlo sampling of visibility is often the main source of noise in rendered images. Indeed, it is common to use deterministic uniform sampling for the smoother shading effects in direct lighting, so that all of the Monte Carlo noise arises from visibility sampling alone. In this article, we analyze theoretically and empirically, using both statistical and Fourier methods, the effectiveness of different nonadaptive Monte Carlo sampling patterns for rendering soft shadows. We start with a single image scanline and a linear light source, and gradually consider more complex visibility functions at a pixel. We show analytically that the lowest expected variance is in fact achieved by uniform sampling (albeit at the cost of visual banding artifacts). Surprisingly, we show that for two or more discontinuities in the visibility function, a comparable error to uniform sampling is obtained by “uniform jitter” sampling, where a constant jitter is applied to all samples in a uniform pattern (as opposed to jittering each stratum as in standard stratified sampling). The variance can be reduced by up to a factor of two, compared to stratified or quasi-Monte Carlo techniques, without the banding in uniform sampling. We augment our statistical analysis with a novel 2D Fourier analysis across the pixel-light space. This allows us to characterize the banding frequencies in uniform sampling, and gives insights into the behavior of uniform jitter and stratified sampling. We next extend these results to planar area light sources. We show that the best sampling method can vary, depending on the type of light source (circular, Gaussian, or square/rectangular). The correlation of adjacent “light scanlines” in square light sources can reduce the effectiveness of uniform jitter sampling, while the smoother shape of circular and Gaussian-modulated sources preserves its benefits—these findings are also exposed through our frequency analysis. In practical terms, the theory in this article provides guidelines for selecting visibility sampling strategies, which can reduce the number of shadow samples by 20--40%, with simple modifications to existing rendering code.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FAST: Filter-Adapted Spatio-Temporal Sampling for Real-Time Rendering;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2024-05-11

2. Doppler Time-of-Flight Rendering;ACM Transactions on Graphics;2023-12-05

3. Gaussian Blue Noise;ACM Transactions on Graphics;2022-11-30

4. BRDF Importance Sampling for Linear Lights;Computer Graphics Forum;2021-11-28

5. Optimizing dyadic nets;ACM Transactions on Graphics;2021-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3