Directive Explanations for Actionable Explainability in Machine Learning Applications

Author:

Singh Ronal1ORCID,Miller Tim1ORCID,Lyons Henrietta1ORCID,Sonenberg Liz1ORCID,Velloso Eduardo1ORCID,Vetere Frank1ORCID,Howe Piers2ORCID,Dourish Paul3ORCID

Affiliation:

1. School of Computing and Information Systems, The University of Melbourne, Australia

2. Melbourne School of Psychological Sciences, The University of Melbourne, Australia

3. Donald Bren School of Information and Computer Sciences, University of California, Irvine, United States

Abstract

In this article, we show that explanations of decisions made by machine learning systems can be improved by not only explaining why a decision was made but also explaining how an individual could obtain their desired outcome. We formally define the concept of directive explanations (those that offer specific actions an individual could take to achieve their desired outcome), introduce two forms of directive explanations (directive-specific and directive-generic), and describe how these can be generated computationally. We investigate people’s preference for and perception toward directive explanations through two online studies, one quantitative and the other qualitative, each covering two domains (the credit scoring domain and the employee satisfaction domain). We find a significant preference for both forms of directive explanations compared to non-directive counterfactual explanations. However, we also find that preferences are affected by many aspects, including individual preferences and social factors. We conclude that deciding what type of explanation to provide requires information about the recipients and other contextual information. This reinforces the need for a human-centered and context-specific approach to explainable AI.

Funder

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3