RMDDS

Author:

Lin Chia-Chun1,Jha Niraj K.1

Affiliation:

1. Princeton University, Princeton, NJ

Abstract

In this article, we propose a flexible and efficient reversible logic synthesizer. It exploits the complementary advantages of two methods: Reed-Muller Reversible Logic Synthesis (RMRLS) and Decision Diagram Synthesis (DDS), and is thus called Reed-Muller Decision Diagram Synthesis (RMDDS). RMRLS does not scale to a large number of qubits (i.e., quantum bits). DDS tools, even though efficient, add a large number of ancillary qubits and typically incur much higher quantum cost than necessary. RMDDS overcomes these obstacles. It is flexible in the sense that users can either optimize the number of qubits or the quantum cost in the circuit implementation. It is also efficient because the circuits can be synthesized within user-defined CPU times. This combination of flexibility and efficiency has been missing from synthesizers presented earlier. When used to synthesize reversible functions, RMDDS reduces the number of qubits by up to 79.2% (average of 54.6%) when the synthesis objective is to minimize the number of qubits and the quantum cost by up to 71.5% (average of 35.7%) when the synthesis objective is to minimize quantum cost, relative to DDS methods. For irreversible functions (which are automatically embedded in reversible functions), the corresponding best (average) reductions in the number of qubits is 42.1% (22.5%) when minimizing the number of qubits, and in quantum cost, it is 63.0% (25.9%) when minimizing quantum cost.

Funder

Taiwan Ministry of Education Fellowship

IARPA

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Method of Reversible Circuits Design with One-gate Prediction;International Journal of Electronics and Telecommunications;2023-07-26

2. Optimization of Reversible Logic Networks with Gate Sharing;Proceedings of the 28th Asia and South Pacific Design Automation Conference;2023-01-16

3. Reversible Circuit Synthesis Method Using Sub-graphs of Shared Functional Decision Diagrams;The Computer Journal;2022-08-01

4. Heuristic Reordering Strategy for Quantum Circuit Mapping on LNN Architectures;Computational Intelligence and Neuroscience;2022-05-05

5. Synthesis of Reversible Circuits with Reduced Nearest-Neighbor Cost Using Kronecker Functional Decision Diagrams;Journal of Electronic Testing;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3